1. **Title:** EE260: Bioimaging and Systems Biology

2. Prerequisite: Consent of instructor

3. Instructor: Bahram Parvin

4. Time and Location: Friday, 2-5pm, Humanities and Social Sciences, Rm 1407

5. **Units:** 4

6. **Description:** The course introduces computational bioimaging within the context of Systems Biology. Instructor will provide a review of molecular and cell biology for Graduate students majoring in Engineering and Computer Science and proceed with issues and techniques in computational bioimaging and bioinformatics systems.

7. Course outline:

- Week one: review of cell and molecular biology for Engineers/Computer scientists and overview of the course projects
- Week two: review of microscopy techniques and production of expression data
- Week three: Introduction to variational calculus and differential geometry
- Week four: Introduction to variational approach for segmentation and shape analysis
- Week five: Level set methods for morphological analysis
- Week six: Spatial voting techniques for morphological and protein localization
- Week seven: Learning methods for shape representation and the analysis of gene expression data
- Week eight Analysis of microarray data and and pathway inference
- Week nine Experimental design, high throughput screening informatics systems, and project presentation by students
- Week ten: Large scale imaging bioinformatics systems and project presentation by students
- Week eleven: Project presentation
- 8. **References:** Instructor will provide papers and handouts. Other references are:
 - Sethian, J. "Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science," Cambridge University Press, 1999.
 - Andres Kriete (editted), "Systems Biology," Elsevier, 2005, In press.
 - Bruce Alberts, et al, "Molecular Biology of the Cell," 4th edition, Garland Publitioning, Inc.
 - Grading: project presentation
 - Quarter: Fall 2006